Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734682

ABSTRACT

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Subject(s)
Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
2.
Evol Appl ; 16(12): 1999-2006, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143905

ABSTRACT

Since the discovery of natural malaria vector populations infected by the endosymbiont bacterium Wolbachia, a renewed interest has arisen for using this bacterium as an alternative for malaria control. Among naturally infected mosquitoes, Anopheles moucheti, a major malaria mosquito in Central Africa, exhibits one of the highest prevalences of Wolbachia infection. To better understand whether this maternally inherited bacterium could be used for malaria control, we investigated Wolbachia influence in An. moucheti populations naturally infected by the malaria parasite Plasmodium falciparum. To this end, we collected mosquitoes in a village from Cameroon, Central Africa, where this mosquito is the main malaria vector. We found that the prevalence of Wolbachia bacterium was almost fixed in the studied mosquito population, and was higher than previously recorded. We also quantified Wolbachia in whole mosquitoes and dissected abdomens, confirming that the bacterium is also elsewhere than in the abdomen, but at lower density. Finally, we analyzed the association of Wolbachia presence and density on P. falciparum infection. Wolbachia density was slightly higher in mosquitoes infected with the malaria parasite than in uninfected mosquitoes. However, we observed no correlation between the P. falciparum and Wolbachia densities. In conclusion, our study indicates that naturally occurring Wolbachia infection is not associated to P. falciparum development within An. moucheti mosquitoes.

3.
Sci Rep ; 13(1): 7449, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156860

ABSTRACT

Hydras are freshwater cnidarians widely used as a biological model to study different questions such as senescence or phenotypic plasticity but also tumoral development. The spontaneous tumors found in these organisms have been so far described in two female lab strains domesticated years ago (Hydra oligactis and Pelmatohydra robusta) and the extent to which these tumors can be representative of tumors within the diversity of wild hydras is completely unknown. In this study, we examined individuals isolated from recently sampled wild strains of different sex and geographical origin, which have developed outgrowths looking like tumors. These tumefactions have common features with the tumors previously described in lab strains: are composed of an accumulation of abnormal cells, resulting in a similar enlargement of the tissue layers. However, we also found diversity within these new types of tumors. Indeed, not only females, but also males seem prone to form these tumors. Finally, the microbiota associated to these tumors is different from the one involved in the previous lineages exhibiting tumors. We found that tumorous individuals hosted yet undescribed Chlamydiales vacuoles. This study brings new insights into the understanding of tumor susceptibility and diversity in brown hydras from different origins.


Subject(s)
Chlamydiales , Hydra , Animals , Male , Humans , Female , Fresh Water
4.
Parasit Vectors ; 16(1): 3, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604731

ABSTRACT

BACKGROUND: Trypanosomes are protozoan parasites of vertebrates that are of medical and veterinary concern. A variety of blood-feeding invertebrates have been identified as vectors, but the role of ticks in trypanosome transmission remains unclear. METHODS: In this study, we undertook extensive molecular screening for the presence and genetic diversity of trypanosomes in field ticks. RESULTS: Examination of 1089 specimens belonging to 28 tick species from Europe and South America led to the identification of two new trypanosome strains. The prevalence may be as high as 4% in tick species such as the castor bean tick Ixodes ricinus, but we found no evidence of transovarial transmission. Further phylogenetic analyses based on 18S rRNA, EF1-α, hsp60 and hsp85 gene sequences revealed that different tick species, originating from different continents, often harbour phylogenetically related trypanosome strains and species. Most tick-associated trypanosomes cluster in a monophyletic clade, the Trypanosoma pestanai clade, distinct from clades of trypanosomes associated with transmission by other blood-feeding invertebrates. CONCLUSIONS: These observations suggest that ticks may be specific arthropod hosts for trypanosomes of the T. pestanai clade. Phylogenetic analyses provide further evidence that ticks may transmit these trypanosomes to a diversity of mammal species (including placental and marsupial species) on most continents.


Subject(s)
Ixodes , Trypanosoma , Animals , Ixodes/parasitology , Phylogeny , Trypanosoma/genetics
5.
Parasit Vectors ; 16(1): 22, 2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36683083

ABSTRACT

BACKGROUND: Ticks and tick-borne pathogens significantly impact both human and animal health and therefore are of major concern to the scientific community. Knowledge of tick-borne pathogens is crucial for prescription of mitigation measures. In Africa, much research on ticks has focused on domestic animals. Little is known about ticks and their pathogens in wild habitats and wild animals like the endangered chimpanzee, our closest relative. METHODS: In this study, we collected ticks in the forested habitat of a community of 100 chimpanzees living in Kibale National Park, Western Uganda, and assessed how their presence and abundance are influenced by environmental factors. We used non-invasive methods of flagging the vegetation and visual search of ticks both on human team members and in chimpanzee nests. We identified adult and nymph ticks through morphological features. Molecular techniques were used to detect and identify tick-borne piroplasmids and bacterial pathogens. RESULTS: A total of 470 ticks were collected, which led to the identification of seven tick species: Haemaphysalis parmata (68.77%), Amblyomma tholloni (20.70%), Ixodes rasus sensu lato (7.37%), Rhipicephalus dux (1.40%), Haemaphysalis punctaleachi (0.70%), Ixodes muniensis (0.70%) and Amblyomma paulopunctatum (0.35%). The presence of ticks, irrespective of species, was influenced by temperature and type of vegetation but not by relative humidity. Molecular detection revealed the presence of at least six genera of tick-borne pathogens (Babesia, Theileria, Borrelia, Cryptoplasma, Ehrlichia and Rickettsia). The Afrotopical tick Amblyomma tholloni found in one chimpanzee nest was infected by Rickettsia sp. CONCLUSIONS: In conclusion, this study presented ticks and tick-borne pathogens in a Ugandan wildlife habitat whose potential effects on animal health remain to be elucidated.


Subject(s)
Ixodes , Ixodidae , Rickettsia , Tick Infestations , Tick-Borne Diseases , Animals , Humans , Pan troglodytes , Uganda , Tick Infestations/epidemiology , Tick Infestations/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Ixodes/microbiology , Rickettsia/genetics , Animals, Wild , Ixodidae/microbiology , Ecosystem
6.
Emerg Infect Dis ; 28(8): 1673-1676, 2022 08.
Article in English | MEDLINE | ID: mdl-35876693

ABSTRACT

We report a case of unusual human anaplasmosis in the Amazon rainforest of French Guiana. Molecular typing demonstrated that the pathogen is a novel Anaplasma species, distinct to all known species, and more genetically related to recently described Anaplasma spp. causing infections in rainforest wild fauna of Brazil.


Subject(s)
Anaplasmosis , Rickettsia Infections , Anaplasma/genetics , Anaplasmosis/diagnosis , Anaplasmosis/drug therapy , Animals , Brazil , Humans , Rainforest
7.
ISME Commun ; 2(1): 9, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-37938691

ABSTRACT

The symbiont-associated (SA) environmental package is a new extension to the minimum information about any (x) sequence (MIxS) standards, established by the Parasite Microbiome Project (PMP) consortium, in collaboration with the Genomics Standard Consortium. The SA was built upon the host-associated MIxS standard, but reflects the nestedness of symbiont-associated microbiota within and across host-symbiont-microbe interactions. This package is designed to facilitate the collection and reporting of a broad range of metadata information that apply to symbionts such as life history traits, association with one or multiple host organisms, or the nature of host-symbiont interactions along the mutualism-parasitism continuum. To better reflect the inherent nestedness of all biological systems, we present a novel feature that allows users to co-localize samples, to nest a package within another package, and to identify replicates. Adoption of the MIxS-SA and of the new terms will facilitate reports of complex sampling design from a myriad of environments.

8.
Microb Ecol ; 83(3): 776-788, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34235554

ABSTRACT

Symbiosis with vitamin-provisioning microbes is essential for the nutrition of animals with some specialized feeding habits. While coevolution favors the interdependence between symbiotic partners, their associations are not necessarily stable: Recently acquired symbionts can replace ancestral symbionts. In this study, we demonstrate successful replacement by Francisella-like endosymbionts (-LE), a group of B-vitamin-provisioning endosymbionts, across tick communities driven by horizontal transfers. Using a broad collection of Francisella-LE-infected tick species, we determined the diversity of Francisella-LE haplotypes through a multi-locus strain typing approach and further characterized their phylogenetic relationships and their association with biological traits of their tick hosts. The patterns observed showed that Francisella-LE commonly transfer through similar ecological networks and geographic distributions shared among different tick species and, in certain cases, through preferential shuffling across congeneric tick species. Altogether, these findings reveal the importance of geographic, ecological, and phylogenetic proximity in shaping the replacement pattern in which new nutritional symbioses are initiated.


Subject(s)
Francisella , Ticks , Animals , Host Specificity , Phylogeny , Symbiosis
9.
Elife ; 102021 12 24.
Article in English | MEDLINE | ID: mdl-34951405

ABSTRACT

Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.


Subject(s)
Francisella/metabolism , Ixodidae/microbiology , Rickettsiales/metabolism , Animals , Francisella/genetics , Gene Transfer, Horizontal , Ixodidae/physiology , Rickettsiales/genetics , Symbiosis/physiology , Vitamin B Complex/biosynthesis
11.
PLoS Negl Trop Dis ; 15(1): e0009008, 2021 01.
Article in English | MEDLINE | ID: mdl-33406079

ABSTRACT

Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata.


Subject(s)
Arthropod Vectors/microbiology , Coxiella burnetii/isolation & purification , Ornithodoros/microbiology , Q Fever/transmission , Animals , Feces/microbiology , Female , Male
12.
Sci Rep ; 10(1): 10596, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606328

ABSTRACT

Lyme disease (LD) and relapsing fevers (RF) are vector-borne diseases caused by bacteria of the Borrelia genus. Here, we report on the widespread infection by a non-described Borrelia species in passerine-associated ticks in tropical rainforests of French Guiana, South America. This novel Borrelia species is common in two tick species, Amblyomma longirostre and A. geayi, which feed on a broad variety of neotropical mammal and bird species, including migratory species moving to North America. The novel Borrelia species is divergent from the LD and RF species, and is more closely related to the reptile- and echidna-associated Borrelia group that was recently described. Genome sequencing showed that this novel Borrelia sp. has a relatively small genome consisting of a 0.9-Mb-large chromosome and an additional 0.3 Mb dispersed on plasmids. It harbors an RF-like genomic organization but with a unique mixture of LD- and RF-specific genes, including genes used by RF Borrelia for the multiphasic antigen-switching system and a number of immune-reactive protein genes used for the diagnosis of LD. Overall, our data indicate that this novel Borrelia is an intermediate taxon between the LD and RF species that may impact a large host spectrum, including American mammals. The designation "Candidatus Borrelia mahuryensis" is proposed for this species.


Subject(s)
Borrelia/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Lyme Disease/microbiology , Relapsing Fever/microbiology , Ticks/microbiology , Animals , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing
13.
Sci Rep ; 10(1): 2537, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054909

ABSTRACT

Rickettsia are obligate intracellular bacteria often associated with ticks and best known for causing human diseases (rickettsiosis), including typhus fever and sporadic cases of serious infection. In this study, we conducted a large survey of ticks in French Guiana to understand the overall diversity of Rickettsia in this remote area largely covered by dense rainforests. Out of 819 individuals (22 tick species in six genera), 252 (30.8%) samples were positive for Rickettsia infection. Multilocus typing and phylogenetic analysis identified 19 Rickettsia genotypes, but none was 100% identical to already known Rickettsia species or strains. Among these 19 genotypes, we identified two validated Rickettsia species, Rickettsia amblyommatis (spotted fever group) and Rickettsia bellii (bellii group), and characterized a novel and divergent Rickettsia phylogenetic group, the guiana group. While some tick hosts of these Rickettsia genotypes are among the most common ticks to bite humans in French Guiana, their potential pathogenicity remains entirely unknown. However, we found a strong association between Rickettsia genotypes and their host tick species, suggesting that most of these Rickettsia genotypes may be nonpathogenic forms maintained through transovarial transmission.


Subject(s)
Phylogeny , Rickettsia Infections/genetics , Rickettsia/genetics , Ticks/genetics , Animals , French Guiana/epidemiology , Genotype , Humans , Rainforest , Rickettsia/pathogenicity , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Ticks/microbiology , Ticks/pathogenicity
14.
Mol Ecol ; 29(5): 1016-1029, 2020 03.
Article in English | MEDLINE | ID: mdl-32034827

ABSTRACT

Mutualistic interactions with microbes have facilitated the adaptation of major eukaryotic lineages to restricted diet niches. Hence, ticks with their strictly blood-feeding lifestyle are associated with intracellular bacterial symbionts through an essential B vitamin supplementation. In this study, examination of bacterial diversity in 25 tick species of the genus Amblyomma showed that three intracellular bacteria, Coxiella-like endosymbionts (LE), Francisella-LE and Rickettsia, are remarkably common. No other bacterium is as uniformly present in Amblyomma ticks. Almost all Amblyomma species were found to harbour a nutritive obligate symbiont, Coxiella-LE or Francisella-LE, that is able to synthesize B vitamins. However, despite the co-evolved and obligate nature of these mutualistic interactions, the structure of microbiomes does not mirror the Amblyomma phylogeny, with a clear exclusion pattern between Coxiella-LE and Francisella-LE across tick species. Coxiella-LE, but not Francisella-LE, form evolutionarily stable associations with ticks, commonly leading to co-cladogenesis. We further found evidence for symbiont replacements during the radiation of Amblyomma, with recent, and probably ongoing, invasions by Francisella-LE and subsequent replacements of ancestral Coxiella-LE through transient co-infections. Nutritional symbiosis in Amblyomma ticks is thus not a stable evolutionary state, but instead arises from conflicting origins between unrelated but competing symbionts with similar metabolic capabilities.


Subject(s)
Amblyomma/microbiology , Biological Evolution , Microbiota , Symbiosis , Amblyomma/classification , Animals , Bacteria/classification , Coxiella , Francisella , Phylogeny , Rickettsia
15.
Ticks Tick Borne Dis ; 11(3): 101376, 2020 05.
Article in English | MEDLINE | ID: mdl-32005627

ABSTRACT

Rickettsia are obligate intracellular bacteria often reported from hard ticks but more rarely from soft ticks. In this study, we detected in Northern Africa two putatively novel Rickettsia species in soft tick species of the Ornithodoros erraticus complex: Ornithodoros occidentalis from Morocco, Ornithodoros erraticus from Algeria and Ornithodoros normandi from Tunisia. We characterized these two novel Rickettsia species on the basis of comparative DNA sequence analyses and phylogenetics of four genes (gltA, 16S rRNA, coxA and ompB). These Rickettsia, provisionally named 'Candidatus Rickettsia africaseptentrionalis' and 'Candidatus Rickettsia mauretanica', differed in nucleotide sequence from those of other Rickettsia species by 0.38-21.43 % depending on the gene examined. Phylogenetics further showed that the two novel Rickettsia species are closely related to each other and represent sister taxa to R. hoogstraalii, R. felis and R. asembonensis within the transitional Rickettsia group. While Ornithodoros host species of 'Candidatus Rickettsia africaseptentrionalis' and 'Candidatus Rickettsia mauretanica' are among the most common soft ticks to bite humans, their pathogenicity remains to be investigated.


Subject(s)
Ornithodoros/microbiology , Rickettsia/classification , Algeria , Animals , Bacterial Proteins , Morocco , Nymph/growth & development , Nymph/microbiology , Ornithodoros/growth & development , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Rickettsia/genetics , Rickettsia/isolation & purification , Tunisia
16.
Parasit Vectors ; 12(1): 268, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31138324

ABSTRACT

BACKGROUND: Ticks are obligate blood feeders transmitting major pathogens worldwide. Over the past few years, considerable research efforts have focused on the diversity, distribution and impact of gut and intracellular bacterial symbionts on tick development and tick-borne pathogen transmission. The study of this internal microbiome requires the use of a sterilization method to remove external (i.e. cuticular) microbes present on the tick's surface and to avoid any further contamination. Several sterilization methods exist, including ethanol- or bleach-based treatments that are both effective in killing microbes but with different potential effects on DNA denaturation. METHODS: We examined how these different sterilization methods impact the measure of internal microbial diversity hosted by the Cayenne tick Amblyomma cajennense (sensu stricto). Bacterial barcoding investigations based on 16S rRNA gene sequences were conducted on two batches of 50 individuals each: Ticks of the first batch were sterilized with bleach diluted at 1% and the second batch with 70% ethanol. Tick external microbiome was also determined from cuticle smearing and water samples used for tick washing. RESULTS: Bacterial barcoding investigations showed major differences between ethanol- and bleach-treated specimens. Both methods led to the detection of major intracellular bacteria associated with A. cajennense (s.s.) but ethanol-treated ticks always harbored a higher bacterial diversity than bleach-treated ticks. Further examinations of tick gut and tick external microbiome revealed that ethanol-based surface sterilization method is inefficient to eliminate the DNA of external bacteria. CONCLUSIONS: We herein provide evidence that studies investigating the internal microbiome of ticks should consider bleach as the gold standard to efficiently remove cuticular bacterial DNA. Indeed, this method does not impact the internal bacterial diversity hosted by ticks and is thus a better method than the ethanol-based one for studying the internal microbiome.


Subject(s)
Bacteria/isolation & purification , Disinfectants/pharmacology , Gastrointestinal Microbiome , Specimen Handling/methods , Ticks/microbiology , Animals , Bacteria/classification , Biodiversity , DNA Barcoding, Taxonomic , Ethanol/pharmacology , Female , RNA, Ribosomal, 16S/genetics , Sodium Hypochlorite/pharmacology , Symbiosis
17.
Ticks Tick Borne Dis ; 10(4): 798-804, 2019 06.
Article in English | MEDLINE | ID: mdl-30922601

ABSTRACT

Ticks are commonly infected by Coxiella-like endosymbionts (Coxiella-LE) which are thought to supply missing B vitamin nutrients required for blood digestion.While this nutritional symbiosis is essential for the survival and reproduction of infected tick species, our knowledge of where Coxiella-LE is localized in tick tissues is partial at best since previous studies have focused on a limited number of Asian or American tick species. To fill this gap, we investigated the tissue localization of Coxiella-LE in three European tick species, Ornithodoros maritimus, Dermacentor marginatus and Ixodes hexagonus, using a diagnostic fluorescence in situ hybridization (FISH) assay, combined with PCR-based detection. Specific fluorescent foci were observed in several tick tissues. We visualized a pronounced tissue tropism of Coxiella-LE for tick ovaries and Malpighian tubules, a pattern suggestive of a high degree of lifestyle specialization toward mutualism: infection of the ovaries is indicative of transovarial transmission, whereas infection of the Malpighian tubules suggests a nutritional function. We postulate that Malpighian tubules are key organs for the nutritional symbiosis, notably the synthesis of B vitamins by Coxiella-LE, whereas the infection of the ovaries ensures vertical transmission of the symbionts to future generations. We also detected occasional infections in other organs, such as salivary glands and the midgut. Finally, we discuss the potential significance of the different tissue tropism for tick biology.


Subject(s)
Coxiella/isolation & purification , Symbiosis , Ticks/microbiology , Animals , Coxiella/physiology , DNA, Bacterial , Dermacentor/anatomy & histology , Dermacentor/microbiology , Europe , Female , In Situ Hybridization, Fluorescence , Ixodidae/anatomy & histology , Ixodidae/microbiology , Malpighian Tubules/microbiology , Ovary/microbiology , Phylogeny , Salivary Glands/microbiology , Ticks/anatomy & histology
18.
Curr Biol ; 28(12): 1896-1902.e5, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29861133

ABSTRACT

Mutualistic interactions with microbes have facilitated the radiation of major eukaryotic lineages [1, 2]. Microbes can notably provide biochemical abilities, allowing eukaryotes to adapt to novel habitats or to specialize on particular feeding niches [2-4]. To investigate the importance of mutualisms for the exclusive blood feeding habits of ticks, we focused on a bacterial genus of medical interest, Francisella, which is known to include both virulent intracellular pathogens of vertebrates [5, 6] and maternally inherited symbionts of ticks [7-9]. Through a series of physiological experiments, we identified a Francisella type, F-Om, as an obligate nutritional mutualist in the life cycle of the African soft tick Ornithodoros moubata. Francisella F-Om mutualism synthesizes B vitamins that are deficient in the blood meal of ticks. Indeed, experimental elimination of Francisella F-Om resulted in alteration of tick life history traits and physical abnormalities, deficiencies which were fully restored with an oral supplement of B vitamins. We also show that Francisella F-Om is maternally transmitted to all maturing tick oocytes, suggesting that this heritable symbiont is an essential adaptive element in the life cycle of O. moubata. The Francisella F-Om genome further revealed a recent origin from a Francisella pathogenic life style, as observed in other Francisella symbionts [6, 7, 10]. Though half of its protein-coding sequences are now pseudogenized or lost, Francisella F-Om has kept several B vitamin synthesis pathways intact, confirming the importance of these genes in evolution of its nutritional mutualism with ticks.


Subject(s)
Francisella/physiology , Ornithodoros/physiology , Rickettsia/physiology , Symbiosis/physiology , Vitamin B Complex/biosynthesis , Animals , Biosynthetic Pathways , Female , Male , Ornithodoros/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...